Iterated Mutual Observation with Genetic Programming
نویسندگان
چکیده
This paper introduces a simple model of interacting agents that learn to predict each other. For learning to predict the other’s intended action we apply genetic programming. The strategy of an agent is rational and fixed. It does not change like in classical iterated prisoners dilemma models. Furthermore the number of actions an agent can choose from is infinite. Preliminary simulation results are presented. They show that by varying the population size of genetic programming, different learning characteristics can easily be achieved, which lead to quite different communication patterns.
منابع مشابه
Controller Placement in Software Defined Network using Iterated Local Search
Software defined network is a new computer network architecture who separates controller and data layer in network devices such as switches and routers. By the emerge of software defined networks, a class of location problems, called controller placement problem, has attracted much more research attention. The task in the problem is to simultaneously find optimal number and location of controll...
متن کاملSolving multi-objective team orienteering problem with time windows using adjustment iterated local search
One of the problems tourism faces is how to make itineraries more effective and efficient. This research has solved the routing problem with the objective of maximizing the score and minimizing the time needed for the tourist’s itinerary. Maximizing the score means collecting a maximum of various kinds of score from each destination that is visited. The profits differ according to whether those...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملIterated Function Systems Optimization with Genetic Algorithms
This paper presents a genetic algorithm used to infer Iterated Function Systems (IFSs) for approximation of 1D and 2D data sets. First, we give an introduction to IFSs. Secondly, we discuss the encoding of 1D and 2D IFSs in the form of chromosomes, and present genetic operators to work upon these representations. The performance of the genetic algorithm is evaluated on four 1D and two 2D test s...
متن کامل